

Tetrahedron Letters 44 (2003) 5505-5506

Synthesis of N-(2-methylpropyl)-2E-undecene-8,10-diynamide, a novel constituent of Echinacea angustifolia

George A. Kraus* and Jaehoon Bae

Department of Chemistry, Iowa State University, Ames, IA 50011, USA Received 14 May 2003; accepted 19 May 2003

Abstract—The first synthesis of a diacetylenic amide from *Echinacea* is reported. The key steps included the reaction of an aldehyde with the monoanion of a diacetylene and the reductive removal of a propargylic alcohol. © 2003 Elsevier Science Ltd. All rights reserved.

Among the many novel natural products isolated from *Echinacea angustifolia* are a series of diacetylenic amides.^{1,2} The structures of three members of the series are shown below. A complex mixture containing at least twelve different acetylenic amides can be obtained by supercritical fluid extraction of fresh dried roots.

These amides have been shown to be active against *A. aegyptii* larvae and *H. zea* neonates at the microgram per milliliter level.³ Authentic standards of these amides are important for metabolomics studies. In conjunction with a study of the metabolites of *Echinacea* and *St. John's wort*, we report the first synthesis of **1** by a direct synthetic route.

Our synthetic route to **1** began with acetal aldehyde **5** that was readily available from the ozonolysis of cyclopentene by the method of Schreiber. Generation of the monoanion of commercially available bistrimethylsilyldiacetylene (**4**) with methyl lithium—lithium bromide complex in THF at 0°C followed by reaction at -78°C with aldehyde **5** afforded propargylic alcohol **6** in 88% yield. Deoxygenation by formation of the thiocarbonylimidazolide with thiocarbonyldiimidazole (CH₂Cl₂, rt)⁶ followed by treatment with 2 equiv. of tributyltin hydride and AIBN at 80°C in toluene for

MeO

^{*} Corresponding author.

one hour produced **8** in 51% yield over two steps. The use of larger quantities of tributyltin hydride should be avoided since addition to the acetylene occurred. Hydrolysis of the acetal (*p*TSA, aqueous acetone) at ambient temperature gave almost a quantitative yield of aldehyde. The aldehyde reacted with the amide phosphorane to afford *E*-isomer **9** in 73% yield. Approximately 10% of the *Z*-isomer was also formed and was readily separable from the *E*-isomer by silica gel flash chromatography. The reaction of amide **9** with tetrabutylammonium fluoride (TBAF) in THF at 0°C produced **1** in 95% yield.

The proton and carbon NMR of our sample was identical to the spectra reported by Nair.³ Diacetylene 1 has been synthesized in eight steps from cyclopentene by a direct and flexible synthetic route. Extension of this work to the synthesis of other members of this family is in progress.

Acknowledgements

We thank the NIH (Grant ES12020) for financial support through the Center for Research on Botanical Dietary Supplements at Iowa State University.

References

 Sun, L.; Rezaei, K. A.; Temelli, F.; Ooraikul, B. J. Agric. Food Chem. 2002, 50, 3947–3953.

- 2. Bauer, R.; Remiger, P. *Planta Med.* **1989**, *55*, 367–371 and references cited therein.
- 3. Ramsewak, R. S.; Erickson, A. J.; Nair, M. G. *Phytochemistry* **1999**, *51*, 729–732.
- 4. Schreiber, S. L.; Claus, R. E.; Reagan, J. *Tetrahedron Lett.* **1982**, *23*, 3867–3870.
- 5. Holmes, A. B.; Jones, G. E. Tetrahedron Lett. 1980, 21, 3111–3112.
- Gunji, H.; Vasella, A. Helv. Chim. Acta 2000, 83, 2975– 2992
- 7. 5 equiv. of tributyltin hydride gave only the products of tin hydride addition.
- Barrett, A. G. M.; Hamprecht, D.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1996, 118, 7863– 7864
- 9. Spec. for aldehyde: 300 MHz 1 H NMR (CDCl₃) δ 9.75 (1H, t, J=1.8 Hz), 2.45 (2H, td, J=6.9, 1.8 Hz), 2.30 (2H, t, J=6.9 Hz), 1.68–1.78 (2H, m), 1.50–1.60 (2H, m), 0.14 (9H, s); 13 C NMR (CDCl₃) δ 202.1, 88.5, 83.7, 79.3, 66.2, 43.4, 27.7, 21.4, 19.3, –0.1; IR (neat) cm $^{-1}$ 2958, 2359, 2225, 2108, 1708, 1250, 846; HRMS m/z for $C_{12}H_{18}OSi$ calcd 206.1127, measured 206.1130.

Amide 9: 300 MHz ¹H NMR (CDCl₃) δ 6.78 (1H, dt, J=15.3, 6.9 Hz), 5.78 (1H, d, J=15.3 Hz), 5.67 (1H, brs), 3.13 (2H, t, J=6.3 Hz), 2.25–2.29 (2H, m), 2.14–2.20 (2H, m), 1.74–1.83 (1H, m, J=6.9 Hz), 1.52–1.56 (4H, m), 0.91 (6H, d, J=6.9 Hz); ¹³C NMR δ 166.1, 143.9, 124.3, 88.6, 83.5, 79.8, 66.0, 47.1, 31.5, 28.8, 27.7, 27.5, 20.4, 19.2, -0.2; IR (neat) cm⁻¹ 3289, 2958, 2359, 2225, 2108, 1669, 1628, 844; HRMS m/z for $C_{18}H_{29}$ NOSi calcd 303.2018, measured 303.2023.